Engineering Digest: Featuring Solid-State Metal Production, 3D Printing, and More

Advanced Engineering Materials has been bringing you the latest breakthroughs in structural materials that are making those important first steps …

Looking for an Automation Engineering for Development of our 3D printer technology!

We are seeking a talented Automation Engineer who will strengthen the team and have a key role in development of our technological platform and core 3D-printing technology.

Work description

The person we are seeking will be heavily involved in the development of Automation systems for our 3D printer technology. It involves development of software in a team consisting of experts in metallurgy, process, control synthesis, sensors, signal processing and mechanical design. The role will work closely together with our leading automation engineer, and tasks are performed in close collaboration with our RPD part development teams of programmers and material, process and product experts.

The position is a member of the department Machine Design & Support, which is responsible for design, development and engineering of the RPD system.

We are urging highly motivated, hands-on and talented graduates within automation/cybernetics, with keen interest for control systems and a desire to work in the industry to apply for the position.

We are looking for someone who:

  • Have a MSc or BSc in automation or cybernetics
  • Have a few years work experience with software development for automation systems
  • Are experienced with Automation control systems, such as Siemens S7, Bosch Rexroth (CODESYS), etc.
  • Have knowledge of real-time programming and / or FPGA systems or embedded systems
  • Have a general overview of automation technology (PLC, process control, fieldbuses, networks, OPC, sensors, drives etc.)
  • Are practical and have hands-on experience
  • Work independently and structured
  • Have excellent collaboration skills and ability to work in a team environment
  • Ability to handle several tasks simultaneously


We can offer you:

  • A highly skilled and multidisciplinary environment with creative and talented colleagues
  • Professional challenges and industrially practical issues
  • Opportunity to take part in the development of an international industrial group
  • Big impact on software development and our RPD technology
  • International environment, with the possibility of a future work period abroad
  • A knowledgeable, good and demanding working environment
  • Company Sports Club
  • Good pension and insurance plan
  • Competitive salary

Engineering students learn how to design bridges using 3D printing

3D Printing

Students in The University of New Mexico Department of Civil Engineering designed and built a railroad bridge this semester, which may not seem like an unusual feat for these students. But, this group of budding engineers did it a little differently – with the aid of 3D printing.

Students in Fernando Moreu’s Civil Engineering 410 (structural design for non-structural engineers) course were tasked with designing a bridge using the typical method of calculating load, stress, materials and other details, then putting them into blueprint form. But, instead of just putting them on paper or in a software program, they were assigned to take it a step further and actually put their designs into a 3D printer to build a miniature bridge to their specifications.

Moreu said the idea of using 3D printing in a classroom setting is very new. He got the idea to incorporate it into his class from a book he recently read called “Bold: How to Go Big, Create Wealth and Impact the World” by Peter Diamandis and Steven Kotler.

Student monitors fabrication

Student Michael McAninch supervises the fabrication of one of the floor beams at the Social Media Workgroup.

“Like sensors, 3D printing is one of those exponentially changing discoveries,” he said. “It’s a new idea now, but everybody will be using 3D printing in five years.”

Moreu, an assistant professor in civil engineering, said this gives students valuable experience in how engineers work in industry, translating plans into reality. The 3D printing component makes the numbers and blueprints more real, he said.

Students in the design course were tasked with completing design projects that expose them to real deadlines, engineering codes, deliverables, scheduling and a final presentation of their work to a hypothetical board of governors that selected the best group to do the project.

He said the students had to learn the 3D printing technology very quickly, and they had no problem being up to the task.

“The students didn’t know anything about 3D printing, so they had to learn,” Moreu said. “But it’s not a matter of being easy or hard. It was something they were interested in learning about, and because of that, they were able to learn fast.”

Students were able to use two 3D printers, in which they could print out different kinds of materials, through a partnership with the Social Media Workgroup at UNM and its director, Andrea Polli, a professor of art.

Moreu first offered the course in fall 2015, but added the 3D component this semester. Students in the course said the 3D experience was valuable to them.

“Normally we would use structural software for a project like this, but with this, I got a physical feel for what we were building,” said Aron Robbins, a senior in civil engineering.

Another student, Michael McAninch, a senior in civil engineering, said he thought what he learned in the project would be immediately transferrable to a career.

“It taught me about the process of a project, because with the 3D printers you can only print one piece of the project at a time, so you have to figure out which pieces to print in what order and how to put them together, just like in real life,” he said.

Students display model bridge

Students in Fernando Moreu’s class display a model of their bridge. 

Moreu said studying structures can be intimidating, especially for students not specializing in that area, but adding the 3D component in the course makes it easier to understand.

“There is a little fear of this area, but when they create something they can see and touch, it makes it seem less complicated and may even encourage some students to want to do further study in the area of structures,” he said. “It’s a great example of active learning and empowering students, and it allows them to see their work and catch mistakes early in the project.”

Moreu said he is planning to incorporate 3D printing into other courses in the future. He said in addition to the 3D component for this course, he incorporated guests from industry to speak to his class and included a segment at the beginning of the semester where students investigated the rail bridge on Central Avenue, becoming familiar with topics such as loading, impact, track design, cost-effective solutions and constructability. 

Joining forces: Genetic Engineering meets 3D Printing

Energy and Material FlowsNews

dif-logo_year_2016_s_blackDon’t forget to hear Chris at DIF 2016 – click to find out more

As part of Circulate’s collaboration with the Disruptive Innovation Festival, we’re featuring insight from some of this year’s Open Mic contributors in advance of their performance at the DIF. Find out more at, and don’t forget to tune into this session with Chris Forman. Chris will release a video on this subject on 18th November at 6pm GMT, and will host a live Q&A on 23rd November at 4pm GMT

Biology is the unparalleled master of additive manufacturing. Observing the formation of biomaterials, like wood or bone, allows biologists and material scientists to see what would be physically possible if we employed complex, multi-component feedstocks and non-equilibrium processes in our own additive manufacturing. Furthermore, while biomimicry of such hierarchical materials would undoubtedly increase the complexity and sophistication of our products, that is only part of the benefit.

The capabilities of biology extend well beyond organising materials. Ecosystems can also regenerate feedstocks, like soil or air, and employ a myriad of microscopic organisms to do so. A single handful of soil contains millions of microbes. In fact, if any single organism’s food is not replenished by the ecosystem the organism dies. The result is a closed network of organisms that is able to sustain itself. The inability to regenerate our feedstocks is an incredibly important issue; such a capability would solve so many other problems. Climate change, pollution, deforestation, inequality are all linked to this problem.

But what would such bioinspired additive technology look like, and how would it work? Could it replace our farms or even our factories?

As land pressure increases there are few places for economies to expand. Outer space is one option and the ocean floor is another. A third and less obvious route to new real estate is to reduce the size of our factories to the size of biological cells, and spread them out! In the same way that a jar of pebbles can accommodate additional sand and a jar of sand can accommodate additional water, shrinking our factories to the cellular level could make better use of the nooks and crannies of urban dwellings. By shrinking to the cellular level we literally increase the catalytic surface area available for processing chemical feedstocks. As Feynman said “There’s plenty of room at the bottom”. Combining Feynman’s notion with Smith’s  “Land, Labour and Capital” leaves us pretty much only one option.

However, as well as providing access to the untapped real estate in the walls of our houses – and possibly even direct solar energy transduction — the real magic of biological systems arises from DNA itself, which is a convenient digital handle that biology exploits to solve the feedstock regeneration problem. DNA encodes the instructions to build enzymes which are able to catalyse almost any chemistry allowing each organism to break down the waste streams of other organisms into food. By tweaking the digital information stored in the DNA of many creatures, biology is able to program feedstock regeneration into an ecosystem.

Taking that concept to the nth degree, what if we could digitally dial up any chemical from a barrel of feedstock in the basement, as easily as we could dial up a picture from the internet?  And what would happen when such sophisticated feedstocks were fed into a 3D Printer?

The Carbon 3D PrinterThe Carbon 3D Printer

Perhaps the most exciting advance in 3D printing in recent years is CLIP, invented by Carbon3D, which allows a solid object to be pulled from a reservoir of liquid feedstock. Such a marvel is achieved by carefully controlling the chemistry of the solidification process. Oxygen diffuses into the system at the same time as a 2D laser image is projected onto it. Where there is both oxygen and light the monomers cross link to form a solid, which you can pull out of the liquid. Get the flow rates just right, and new liquid solidifies onto the bottom of the retracting solid structure, which can have almost any geometry you please.

The secret to advanced additive manufacturing is control over chemistry, which is precisely what enzymes do for biology. Consequently, in the future, the ability to digitally generate sophisticated feedstocks – possibly containing enzymes – might enable advanced forms of additive manufacturing in which we can spatially control the chemistry of an additive process. Perhaps we could develop structures akin to bone or wood but optimised for technological rather than biological applications using precisely the same materials and processes as biology.

Pulling all these remarkable ideas together we notice an incredible thing. Industry is currently building the ability to control feedstocks and assembly processes using digital information. Synthetic biology combined with additive manufacturing yields total digital control over the materials around us, from the molecular to the planetary, and this is precisely the tool we need to help us regenerate the natural reservoirs around us.

The marginal cost of changing DNA is tiny and allows big changes in feedstock or assembly to occur with relatively little effort. If the uptake of such technology expanded geometrically, the way computers have done, perhaps, in concert with natural biology, we would easily be able to control the levels of CO2 in our atmosphere in short order.

Indeed, companies like Organovo in San Diego have begun exploring the crossover between additive manufacturing and biology by printing out cells using 3D printers to generate replacement or pharmaceutical testing tissues such as livers, hearts and other organs. Other companies like Ecovative are producing materials using fungi, Modern Meadow is creating synthetic leather, Bolthreads is targeting synthetic silk and the list continues to grow!

Ecovative are finding new applications for their mycelium based material.Ecovative are finding new applications for their mycelium based material

Perhaps synthetic biology can evolve into areas with entirely novel technological applications. What if our house-factory-farm could possess a synthetic kidney? May be we could filter useful molecules from waste water and pipe it back to where it’s needed?  Shampoo for example? Biocidal soap would never be released to the ecosystem and we could eliminate the packaging, transport, palm oil, and crude oil feedstocks associated with shampoo – and many other chemicals besides.

Indeed there is an economic incentive to take part in such a network of waste sharing companies. If a company used materials that could not be sourced from other companies, or dialled up from the basement, then the company would have to maintain the entire supply chain for the material itself.  

There is a danger though. If such a commercial circular economy did not replenish natural feedstocks to support life on Earth, then economics would succeed in replacing biology with an entirely orthogonal materials ecosystem and who knows if the resulting environment will be capable of supporting biological life at all? We are not free to choose just any circular economy. We must choose one that is compatible with biology.

Building synthetic biology into the foundation of our materials reprocessing system does more than digitise feedstock production and enhance the possibilities of additive manufacturing. It also strategically guarantees that our global economic system has a vested interest in maintaining the environment so it is appropriate for biology. Genetic engineering, far from destroying the environment, could well be the saving grace that allows us to unite industry and ecology, thus preserving the environment for biological systems, while adding economic value as a by-product.

Previous post

Policy shift opportunities for a circular economy?

Next post

This is the most recent story.

The Author

Chris Forman

Chris Forman

Dr Forman studies the emergent properties of biomaterials and how they could be exploited for technological purposes. The ultimate aim of his research is to achieve digital control over every level in the manufacturing process from molecules to complete systems. He has degrees in theoretical physics and nanotechnology and a PhD in experimental biophysics. His approach is to combine synthetic biology and additive manufacturing to create a powerful generalised fabrication technique, that uses the same core materials (C, H, N, O, P, S) as natural ecosystems. Such a sophisticated materials and manufacturing platform will facilitate the conversion to a circular economy.